ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT
 WEST ASH POND
 F.B. CULLEY GENERATING STATION
 WARRICK COUNTY, INDIANA

by
Haley \& Aldrich, Inc.
Greenville, South Carolina

for
Southern Indiana Gas and Electric Company
Evansville, Indiana

File No. 129420
July 2021
List of Tables ii
List of Figures ii

1. Annual Groundwater Monitoring Report Summary 1
1.1 40 CFR § 257.90(e)(6) SUMMARY 1
1.1.1 40 CFR § 257.90(e)(6)(i) - Status of Monitoring Program at Start of Reporting Period 1
1.1.2 40 CFR § 257.90(e)(6)(ii) - Status of Monitoring Program at End of Reporting Period 1
1.1.3 40 CFR § 257.90(e)(6)(iii) - Statistically Significant Increases 1
1.1.4 40 CFR § 257.90(e)(6)(iv) - Statistically Significant Levels 2
1.1.5 40 CFR § 257.90(e)(6)(v) - Selection of Remedy 2
1.1.6 40 CFR § 257.90(e)(6)(vi) - Remedial Activities 3
1.240 CFR § 257.90(a) 3
1.3 40 CFR § 257.90(e) - SUMMARY 3
1.3.1 Status of the Groundwater Monitoring Program 4
1.3.2 Key Actions Completed 4
1.3.3 Problems Encountered 5
1.3.4 Actions to Resolve Problems 5
1.3.5 Project Key Activities for Upcoming Year 5
1.4 40 CFR § 257.90(e) - INFORMATION 6
1.4.1 40 CFR § 257.90(e)(1) 6
1.4.2 40 CFR § 257.90(e)(2) 6
1.4.3 40 CFR § 257.90(e)(3) 7
1.4.4 40 CFR § 257.90(e)(4) 7
1.4.5 40 CFR § 257.90(e)(5) 7

Tables
Figures
Appendix A - 60 Day CMA Extension Demonstration

List of Tables

Table No.

I

II

III

IV

List of Figures

Figure No.

1

Title

Groundwater Monitoring Well Locations and Construction Details

Summary of Groundwater Quality Data from Original CCR Monitoring Network

Summary of Groundwater Quality Data for Monitoring Wells Installed to Assess the Nature and Extent of Appendix IV SSLs

Summary of Groundwater Quality Data for Monitoring Wells Installed to Comply with IDEM Approval of Closure/Post-Closure Plan

Groundwater Monitoring Well Locations

1. Annual Groundwater Monitoring Report Summary

1.1 40 CFR § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
1.1.1 40 CFR § 257.90(e)(6)(i) - Status of Monitoring Program at Start of Reporting Period

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § $\mathbf{2 5 7 . 9 4}$ or the assessment monitoring program in §257.95;

At the start of the current annual reporting period the West Ash Pond (WAP) was operating under an assessment monitoring program in compliance with 40 CFR § 257.95.

1.1.2 40 CFR § 257.90 (e)(6)(ii) - Status of Monitoring Program at End of Reporting Period

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;

At the end of the current annual reporting period the WAP was operating under an assessment monitoring program in compliance with 40 CFR § 257.95.

1.1.3 40 CFR § 257.90(e)(6)(iii) - Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to §257.94(e):

1.1.3.1 40 CFR § 257.90(e)(6)(iii)(A)

Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and

The WAP is operating under an assessment monitoring program; therefore, no statistical evaluations were conducted on Appendix III constituents in 2020/2021.
1.1.3.2 40 CFR § 257.90(e)(6)(iii)(B)

Provide the date when the assessment monitoring program was initiated for the CCR unit.

An assessment monitoring program was established on 7 February 2020 for the WAP to meet the requirements of 40 CFR § 257.95 . The WAP remained in assessment monitoring in 2020/2021.

1.1.4 40 CFR § 257.90(e)(6)(iv) - Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to $\S 257.95(\mathrm{~g})$ include all of the following:

1.1.4.1 40 CFR § 257.90(e)(6)(iv)(A) - Statistically Significant Level Constituents

Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;

Statistical analysis was completed in January 2021 (November 2020 sampling event) as described in § 257.93(h)(2) and statistically significant level (SSL) of lithium and molybdenum were each identified downgradient of the WAP at monitoring well WAP-3S (lithium and molybdenum) and WAP-4S (molybdenum).

1.1.4.2 40 CFR § 257.90(e)(6)(iv)(B) - Initiation of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was initiated for the CCR unit;

Assessment of corrective measures was initiated on 30 October 2020.

1.1.4.3 40 CFR § 257.90(e)(6)(iv)(C) - Assessment of Corrective Measures Public Meeting

Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

The public meeting has not been held for the assessment of corrective measures for the WAP. Evaluation of site-specific aspects that are necessary to prepare for the public meeting and inform the selection of remedy are in progress.

1.1.4. 40 CFR § 257.90(e)(6)(iv)(D) - Completion of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was completed for the CCR unit.

The assessment of corrective measures was completed on 26 February 2021 and placed into the facility's Operating Record, posted to the publicly available website, and the notification sent to the state agency.

1.1.5 40 CFR § 257.90(e)(6)(v) - Selection of Remedy

Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection; and

The selection of remedy required under § 257.97 is ongoing in 2020/2021 for lithium and molybdenum at the WAP.

1.1.6 40 CFR § 257.90(e)(6)(vi) - Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.

No remedial activities have been initiated in 2020/2021; therefore, no demonstration or certification is applicable for this unit.

1.2 40 CFR § 257.90(a)

Except as provided for in § $\mathbf{2 5 7 . 1 0 0}$ for inactive CCR surface impoundments, all CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under § 257.90 through § 257.98.

The WAP at the F.B. Culley Generating Station (FBC) is subject to the groundwater monitoring and corrective action requirements described under Code of Federal Regulations Title 40 (40 CFR) § 257.90 through § 257.98 (Rule). The WAP located at FBC was previously classified as an inactive surface impoundment as defined by 40 CFR $\S 257.53$. The Southern Indiana Gas and Electric Company (SIGECO) filed a Notice of Intent (NOI) to initiate closure of the WAP and placed the NOI in the facility's operating record on 17 December 2015. However, on 5 August 2016, the United States Environmental Protection Agency (USEPA) issued a "Direct Final Rule" effective on 4 October 2016, constituting a vacatur of 40 CFR § 257.100. The Direct Final Rule applies the requirements of existing surface impoundments that had been previously declared inactive. As a result, the WAP had to comply with the groundwater monitoring requirements for existing CCR surface impoundments. The CCR Rule changes extended the deadlines to comply with the groundwater monitoring and corrective action requirements with the initial annual groundwater monitoring and corrective action report being placed in the facilities operating record by 1 August 2019 and annually thereafter.

SIGECO continued to pursue closure of the WAP while complying with the requirements described in § 257.90 through § 257.98. The Indiana Department of Environmental Management (IDEM) issued their approval of Closure/Post-Closure Plan in December 2019 and closure activities were completed in December 2020. As part of IDEM's approval, IDEM requested that additional wells be installed for postclosure monitoring.

This document addresses the requirement for the Owner/Operator to prepare an Annual Groundwater Monitoring and Corrective Action Report (Annual Report) per § 257.90(e).

1.3 40 CFR § 257.90(e) - SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater

Abstract

monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

As required by $\S 257.100(\mathrm{e})(5)(\mathrm{ii})$, this Annual Report is to be completed no later than 1 August 2021 due to the partial vacatur ordered by the District of Columbia Circuit Court on 14 June 2016 and the subsequent Direct Final Rule effective 4 October 2016, and within one year of the previous annual report being placed into the facility's operating record. As required, this Annual Report documents the status of the groundwater monitoring and corrective action program for the WAP at FBC and summarizes key actions completed through the current reporting period.

1.3.1 Status of the Groundwater Monitoring Program

As provided in the notification on 12 July 2019, statistically significant increases (SSI) of Appendix III constituents were identified downgradient of the WAP. An evaluation of alternate sources was conducted; however, a successful alternate source demonstration (ASD) was not achieved at that time. As a result, an Assessment Monitoring program was initiated as required by $\S 257.94(\mathrm{e})(2)$. Annual and semi-annual groundwater samples were collected as outlined in $\S 257.95(\mathrm{~b})$ and $\S 257.95$ (d)(1) and groundwater protection standards (GWPS) were established as required by § 257.95(d)(2). Statistical analysis was completed on 2 July 2020 as described in § 257.93(h)(2) and statistically significant levels (SSL) of Appendix IV constituents above GWPS (lithium and molybdenum) were identified downgradient of the WAP. As a result, an assessment of corrective measures was initiated as required by § 257.96. A 60 -day extension to complete the assessment of corrective measures was required and certified by a professional engineer as required by 257.96(a). Semiannual assessment monitoring is ongoing along with baseline sampling at well locations required by IDEM.

1.3.2 Key Actions Completed

The following key actions were completed in 2020/2021:

- Statistical analysis of assessment monitoring results on 21 January 2021 (November 2020 event) to evaluate potential for SSLs of Appendix IV constituents in groundwater downgradient of the WAP.
- Preparation of the 2019/2020 Annual Report which included the following activities:
- The 2019/2020 Annual Report was placed in the facility's operating record pursuant to § 257.105(h)(1).
- Pursuant to § 257.106(h)(1), the notification was sent to the relevant State Director and/or Tribal authority within 30 days of the 2019/2020 Annual Report being placed in the facility's operating record [§ 257.106(d)].
- Pursuant to § $257.107(\mathrm{~h})(1)$, the 2019/2020 Annual Report was posted to the CCR Website within 30 days of the 2019/2020 Annual Report being placed in the facility's operating record [§ 257.107(d)] and 257.107(h)(1)].
- Assessment monitoring groundwater samples were collected and analyzed in accordance with § 257.95(b) and § 257.95(d)(1).
- Initiated (or continued) evaluation of the nature and extent of Appendix IV SSLs as required by § 257.95(g)(1);
- Installed additional monitoring wells to comply with IDEM's Approval of Closure/Post-Closure Plan.
- Initiated and completed an assessment of corrective measures in accordance with § 257.96;
- The 90-day deadline to complete the assessment of corrective measures was extended an additional 60-days in accordance with § 257.96(a). (Appendix A)
- The assessment of corrective measures was placed in the facility's operating record in accordance with § 257.96 (d).

1.3.3 Problems Encountered

Closure activities associated with stormwater management resulted in existing wells WAP-2R and WAP3 being inaccessible.

1.3.4 Actions to Resolve Problems

Monitoring wells WAP-2R and WAP-3 were properly abandoned and replaced with new wells (WAP-2RR and WAP-3S).

1.3.5 Project Key Activities for Upcoming Year

Key activities to be completed in 2021/2022 include the following:

- Further define the nature and extent of lithium and molybdenum in groundwater downgradient of the WAP.
- Continue semiannual groundwater monitoring in accordance with § 257.95.
- Continue baseline sampling as required by IDEM at new monitoring locations that were also required by IDEM.
- Complete statistical analysis of the semiannual groundwater sampling results as required by § $257.93(\mathrm{~h})(2)$.
- Hold a public meeting with interested and affected parties in accordance with § 257.96(e) to discuss the results of the corrective measures assessment at least 30 days prior to the selection of remedy.
- Prepare semiannual progress reports, as necessary, describing the progress in selecting and designing the remedy as outlined in $\S 257.97$ (a).
- As soon as feasible following the public meeting select a remedy that, at a minimum, meets the standards outlined in § 257.97(b).
- As part of the selected remedy SIGECO will develop a schedule for implementing and completing remedial activities as defined in $\S 257.97$ (d) and develop a Corrective Action Groundwater Monitoring Program per § 257.98(a)(1).
1.4 40 CFR § 257.90(e) - INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

1.4.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the location of the WAP, associated upgradient and downgradient wells installed to comply with the Federal CCR Rule, wells installed to assess the nature and extent of Appendix IV SSLs, and monitoring wells required by IDEM are presented as Figure 1.

1.4.2 40 CFR § 257.90(e)(2)

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

To characterize the horizontal and vertical nature and extent of SSLs at the WAP, four new monitoring wells were installed in the uppermost aquifer downgradient of the WAP. The four new monitoring wells, identified as WAP-3D, WAP-9S, WAP-9I and WAP-9D were completed in the shallow, intermediate and deep zones of the aquifer. Monitoring well WAP-3D was installed to evaluate the vertical extent of Appendix IV SSLs at the western boundary of the unit and the WAP-9 well cluster was installed at the downgradient property line in the direction of flow as required by $\S 257.95(\mathrm{~g})(1)(\mathrm{iii})$. In addition, four existing wells (WAP-4I, WAP-4D, WAP-5I, and WAP-5D) were added to the monitoring program to monitor the vertical extent of Appendix IV SSLs at the southern boundary of the unit.

Due to closure activities associated with stormwater management at the closed unit, WAP-2R and WAP3 were decommissioned and replaced with new monitoring wells (WAP-2RR and WAP-3S).

As a requirement of IDEM's Approval of Closure/Post-Closure Plan three additional monitoring well clusters were installed around the WAP. These include the WAP-6S, WAP-6I, WAP-6D, WAP-7S, WAP7D, WAP-8S, WAP-8I and WAP-8D.

Monitoring well locations are shown on Figure 1 and construction details are provided in Table I.

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b) and § 257.95(d)(1), two independent samples from each background and downgradient monitoring well were collected and analyzed for the original monitoring well network (WAP-1, CCR-AP-7, WAP-2RR, WAP-3S, WAP-4S and WAP-5S). Baseline sampling as required by IDEM under state program requirements is currently being conducted for the WAP-6, WAP-7, and WAP-8. The eight rounds of state baseline sampling are scheduled to be completed in November 2021. Summary tables including the sample names, dates of sample collection, reason for sample collection (detection, assessment, or baseline), and monitoring data obtained for the groundwater monitoring program for the WAP is presented in Tables II, III, and IV of this report. Table II summarizes the assessment monitoring results for the original CCR monitoring network, Table III provides the results obtained to characterize the nature and extent of Appendix IV SSLs, and Table IV includes the state required baseline sampling results at monitoring locations required by IDEM.

1.4.4 40 CFR § 257.90(e)(4)

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

Statistical analysis was completed in January 2021 (November 2020 sampling event) as described in § 257.93(h)(2) and the SSLs of lithium and molybdenum continue to be observed downgradient of the WAP consistent with previous results. As a result, the monitoring program did not change and the WAP remained in assessment monitoring.

1.4.5 40 CFR § 257.90(e)(5)

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

Other information including development of groundwater protection standards, recording groundwater monitoring results in the operating record, and an evaluation of alternate sources was included in previous annual reports.

TABLES

TABLE 1
GROUNDWATER MONITORING WELL LOCATION AND CONSTRUCTION DETAILS
F.B. CULLEY GENERATING STATION - WEST ASH POND

NEWBURGH, INDIANA

	Easting	Northing	Top of Pad Elevation (ft msl)	Top of Casing Elevation (ft msl)	Surface Grout (ft bgs)	Bentonite (ft bgs)	Sand Pack (ft bgs)	Screen Zone (ft bgs)	Screen Length (ft)	Well Radius (in)
Upgradient Wells										
WAP-1	2882824.18	971214.17	403.77	403.39	0-22	22-24	24-36	26-36	10	2
CCR-AP-7	2883090.34	970774.64	429.50	434.11	0-16	16-18	18-30	20-30	10	2
Downgradient Wells (CCR Monitoring Network)										
WAP-2RR	2881499.20	971367.50	391.70	391.74	0-42	42-44	44-56	46-56	10	2
WAP-3S	2881252.80	970978.10	388.20	388.47	0-55	55-57	57-70	60-70	10	2
WAP-4S	2881333.40	970405.60	384.60	384.61	0-31	31-33	33-45	35-45	10	2
WAP-5S	2881521.50	970236.00	384.60	384.68	0-26	26-28	28-40	30-40	10	2
(Assessment of Nature \& Extent)										
WAP-3D	2881253.20	970975.00	388.20	388.41	0-65.5	65.5-68	68-82.5	72.5-82.5	10	2
WAP-4I	2881329.10	970409.20	384.50	384.58	0-61	61-63	63-75	65-75	10	2
WAP-4D	2881325.40	970412.50	384.50	384.48	0-102	102-104	104-116	106-116	10	2
WAP-5I	2881525.00	970232.80	384.70	384.71	0-61	61-63	63-75	65-75	10	2
WAP-5D	2881528.80	970229.90	384.60	384.71	0-99	99-101	101-113	103-113	10	2
WAP-9S	2881063.86	970693.11	393.00	392.69	0-51	51-53	53-65	55-65	10	2
WAP-91	2881066.94	970697.89	393.20	392.88	0-76	76-78	78-90	80-90	10	2
WAP-9D	2881069.75	970701.94	393.10	392.74	0-112.5	112.5-114.5	114.5-126.5	116.5-126.5	10	2
(IDEM Approval of Closure/Post-Closure Plan)										
WAP-6S	2881090.90	970688.30	385.90	385.95	0-36	36-38	38-50	40-50	10	2
WAP-6I	2881088.20	970683.30	386.10	386.11	0-65.5	65.5-67.5	67.5-80	70-80	10	2
WAP-6D	2881092.60	970693.10	386.00	386.06	0-101	101-103	103-115.5	105.5-115.5	10	2
WAP-7S	2881363.50	971158.10	389.40	389.55	0-45	45-47	47-60	50-60	10	2
WAP-7D	2881365.20	971161.50	389.20	389.25	0-64	64-66	66-78.5	68.5-78.5	10	2
WAP-8S	2881317.80	970630.00	384.80	384.90	0-35	35-37.5	37.5-50	40-50	10	2
WAP-81	2881313.40	970633.60	384.70	384.78	0-65.5	65.5-67.5	67.5-80	70-80	10	2
WAP-8D	2881309.50	970636.70	384.70	384.72	0-92.5	92.5-94.5	94.5-107	97-107	10	2

NOTES:

bgs = below ground surface
$\mathrm{ft}=$ feet
in = inches
$\mathrm{msl}=$ mean sea level

| \begin{tabular}{\|l|}
\hline
\end{tabular}Location Group Loction Name Sample Name Sample eate Lab Sample	Action Level	Upgradient				Downgradient							
	Maximum Contaminant Level/ Regiona Screening Le		CRR-AP-7 CCR-AP-7-20210507 O5/O7/2021 $180-121360-8$	WAP-1 WAP-1-20201124 $11 / 24 / 2020$ $180-11417-1$	WAPP-1 WAP-1-20210507 o507202 $180-121360-1$	WAP-2RR WAP-2R-20201124 $11 / 24 / 2020$ $180-114117-2$	WAP-2RR WAP-RRR-20210506 O5/06/2021 $180-121300-2$	WAP-3S WAP-35-2020124 $11 / 24 / 2020$ $180-114117-4$	WAP-3S WAP-35-30210506 O5/06/2021 $180-121360-3$	WAP-45 WAP-45-2021123 1132 180-12021		WAP-55 WAP-5S-20201124 $11 / 24 / 2020$ 18 180-114117-11	$\begin{array}{\|c\|} \hline \text { WAP-5S } \\ \text { WAP-5S-20210505 } \\ 05 / 5 / 2021 \\ 180-121261-4 \\ \hline \end{array}$
Calcium, Total chloride (mg/L)	NA	${ }_{29}^{110}$	${ }_{26}^{110}$	190	180 35	${ }^{140}$	${ }_{1}^{150}$	${ }_{41}^{98}$	${ }_{38}^{90}$	310 180 1	300 150	260 150	240 140
chloride (m/L) Fluoride (mE/L)	$\stackrel{\mathrm{Na}}{4}$	29 0.33	26 0.57	33 0.11	35 0.28	45 0.27	61 0.32	- 0.75	38 0.76	${ }_{0.23}^{180}$	150 0.22		140 0.1
Sulfate (m / L)	na	$78.1+$	${ }_{9} 9$	320	300	170	230	130	150	520	550	400	430
$\mathrm{OH}($ (ab) (su$)$	NA	7.51	7.45	7.21	7.41	7.11	7.21	7.81	7.71	7.51	7.31	${ }^{712}$	6.99
Total Dissolved Solids (TDSS (m/L)	NA	510	870	960	890	530	690	490	430	1300	1300	1200	1200
Assessment Monitoring - EPA Appendix IV Constituents (mg/L)													
Arsenic, Total	0.01	${ }^{0.0062}$	0.000	0.025	0.014	0.0078	0.0021	0.00991	0.00097 J	0.0049	0.0051		
Barium, Total	2	0.13	0.992	0.99	0.68	0.086	${ }^{0.0043}$	0.031	0.024	0.049	0.054	0.052	0.052
Berylium, Total	0.004	${ }^{0.0014}$	${ }^{0.0014}$	0.00099	0.00059	0.00037 J	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$
${ }_{\text {col }}^{\substack{\text { Cadmium, Total } \\ \text { Chromium, Total }}}$	0.005 0.1	${ }^{0.001 \mathrm{U}} 0$	${ }_{0}^{0.0002 \mathrm{U}}$	${ }_{0}^{0.00037}$ (${ }^{0.093}$	${ }_{\substack{0.0016 \\ 0.016}}^{0.080}$	${ }_{0}^{0.000535}{ }_{0}^{0.0057}$	0.00002 ${ }_{0}^{0.003}$	${ }_{0}^{0.0002 \mathrm{U}}$	${ }_{0}^{0.0002 \mathrm{U}}$	0.001 U 0.002 U	${ }_{0}^{0.0002 \mathrm{U}}$	${ }^{0.0002 \mathrm{U}}$	${ }_{0}^{0.0002 \mathrm{U}}$
Cobalt, Total	0.006	0.00021 J	0.00076	0.012	0.0074	${ }_{0}^{0.0097}$	${ }_{0}^{0.0032}$	${ }_{0}^{0.0018}$	${ }_{0}^{0.0014}$	${ }_{0}^{0.002}$	${ }_{0}^{0.0018}$	${ }_{0}^{0.0088}$	${ }_{0}^{0.0074}$
Fluoride (mg/L)	4	0.33	0.57	0.11	0.28	0.27	0.32	0.75	0.76	0.23	0.22	0.081 J	0.1
Lead, Total	0.015	${ }^{0.0014}$	${ }^{0.0014}$	0.022	0.013	${ }^{0.0056}$	${ }^{0.0013}$	0.001	0.00074	0.00015 J	${ }^{0.001 U}$	0.00036 J	${ }^{0.0002 J}$
Lithium, Total	0.04	${ }^{0.0099}$	${ }^{0.0091}$	0.021	0.012	0.041	0.032	${ }^{0.087}$	0.085	${ }^{0.005 ~} \mathrm{U}$	${ }^{0.0055}$	${ }^{0.0055}$	${ }^{0.0055}$
Mercury, Total	${ }_{\text {co. }}^{0.002}$	- 0.0002 U	0.0.002U	${ }^{0.0002 U} \begin{aligned} & 0.0027 J\end{aligned}$	${ }^{0.00020}{ }_{0}^{0.0024}$ J	${ }_{0}^{0.0002 \mathrm{U}}$	${ }_{0}^{0.0002 U}$	${ }^{0.0002 \mathrm{U}}$	$\stackrel{0.002 \mathrm{U}}{ }$	${ }_{0}^{0.0002 U}$	${ }_{0}^{0.0002 \mathrm{U}}$	0.0002 U $0.00081 J$	0.0002 U 0.00079
Selenium, Total	0.05	0.005	0.005 U	0.005 U	0.005	0.0033 J	0.0099 」	0.005	0.005	${ }_{0}^{0.005}$	${ }^{0.005}$ U	0.0005	0.0005
Thallium, Total	0.002	0.001 U	0.001 U	0.000631	0.00041	0.00027 J	0.00023)	0.001 U					
Radium-226	${ }_{N A}{ }^{\text {NA }}$	(0.0646¥0.023	($\begin{gathered}0.239 \pm 0.118 \\ 0.249 \cup \pm 0.26\end{gathered}$	${ }_{2}^{2.20 \pm \pm 1.169}$		(0.5610 0.021	($\begin{aligned} & 0.1888 \pm 0.109 \\ & 0.329 \pm 0.308\end{aligned}$			${ }^{0.1050 \pm 0.323} 1.04 \pm 0.432$	- 0.00246 ± 0.0939		$0.144 \cup \pm 0.109$ $0.217 \cup 0.354$
Radium-2268228	5	$0.126 \cup \pm 0.367$	$0.487 \pm \pm 0.286$	4.74 ± 1.5	1.21 + 0.621	1.53 + 0.834	$0.517 \pm \pm 0.327$	1.38] ± 0.965	$0.388 \mathrm{U} \pm \pm .452$	1.21 1 ± 0.539	$0.179 \cup \pm 0.322$	${ }^{0.409 ~} \mathrm{U} \pm 0.387$	$0.361 \cup \pm 0.37$
	NA	0.98477	${ }_{0}^{0.88446}$	${ }_{1.1407}^{4.97}$	${ }_{1.4168}^{1.75}$	${ }_{0}^{0.93659}$	${ }_{1.0508}^{16.17}$	${ }_{0}^{0.66555}$	${ }_{0.68845}^{0.12}$	${ }_{1.6846}$	${ }^{1.717164}$	${ }^{1.5892}$	${ }^{1.5749}$
ORP, Field (mv)	NA	-85.4	22.6	95.8	-106	40.1	51.8	28.8	17.9	-36.1	32.9	12.3	-2.1
Turbidity, Field (NTU)	na	0	11.97	750.84	40.47	133.32	47.9	10.04	38.89	94.17	22.26	4.19	3.55
pH, Field ((u)	NA	6.82	6.99	7.05	7.00	6.71	6.63	7.49	7.46	7.11	6.98	6.56	6.46

Abbrevaations ano notes:
Cm: Coil combusition Resid
pci/l: pipocruie ee lite.
su: standard units.
Usepa: United States Environmental Protetetion Agency.

					$\begin{gathered} \text { WAP-3D } \\ \text { WAP-3D-20210415 } \\ \text { O4/15/20201 } \\ 180-120201-1 \\ \hline \end{gathered}$		$\begin{gathered} \text { WAPP-30 } \\ \text { WAP-30-3020060 } \\ \text { O550.2020 } \\ 180-12130-4 \\ \hline \end{gathered}$	$\xrightarrow[\substack{\text { Dewngraien } \\ \text { WAP-4P-4D-2020112 } \\ \text { 1/1/242020 } \\ 180-14117-6}]{ }$						$\begin{gathered} \text { WAPP-41 } \\ \text { WAP.4.-20210413 } \\ \text { 04413/2021 } \\ 180-120201-2 \\ \hline \end{gathered}$	
Detection Monitoring- EPA Appendix III Constituents (mg/L) Boron, Total	Na	10	6	9.4	6.5	6.5	7.5	${ }^{0.067 J}$	${ }^{0.083}$	${ }^{0.08 U}$	${ }^{0.095 ~ U ~}$	${ }^{0.086}$	${ }^{0.0711}$	0.08 U	0.084 U
Caccium, otat	NA	180	130	180	${ }_{140}$	${ }_{130}$	150	51	${ }_{52}$	${ }_{45}$	50	48	40	33	33
Chloride (mg/L)	NA	84	60	68 J+	58	58	66	23	21	21	20	25	10	24	24
Fluoride (me/L)	4	0.39	0.5	0.53	0.41	${ }^{0.4}$	0.46	0.16	0.13	0.13	0.14	0.11	0.14	0.12	0.14
Sulfate (mgl)	na	400	280	250 +	300	310	310	36	35	32	34	${ }^{60}$	10	${ }^{41}$	${ }^{43}$
	${ }_{\text {NA }}^{\text {NA }}$	7.91 930	7.91 660	7.81 810	7.51 740	7.71 750	7.91 700	7.71 250	7.65 240	7.51 290	7.71 230	7.61 270	7.51 210	7.65 230	7.65 200
Assesment Monitoring- EPA Appendix 1 V Constituents (mg/L)															
Antimony, Total	0.006	0.002 U	${ }^{0.002 U}$	${ }^{0.002 ~ U ~}$	0.02 U	0.02 U	${ }^{0.002 ~ U ~}$	${ }^{0.002 U}$	0.0019 J	${ }^{0.002 ~ U ~}$	${ }^{0.002 ~ U ~}$	${ }^{0.002 ~ U ~}$	0.002 U	${ }^{0.002 ~ U ~}$	${ }^{0.002 ~ U ~}$
Arsenic, Total	0.01	0.00032 J	0.0012	0.005	0.00086	0.00099	${ }^{0.001 ~}{ }^{\text {U }}$	0.024	0.29	0.057	0.0098	0.025	0.028	0.0059	${ }^{0.0026}$
Barium, Total	2	0.019	0.018	0.068	0.018	0.018	0.016	0.31	0.78	0.39	0.29	${ }^{0.25}$	0.33	0.18	0.14
Berylium, Total	0.004	${ }^{0.0014}$	${ }^{0.00014}$	${ }^{0.0014}$	${ }^{0.00031}$	${ }^{0.00014}$	${ }^{0.001 u}$	${ }^{0.0014}$	${ }^{0.00033 J}$	${ }^{0.0014}$	0.001 U 0.001 u	${ }^{0.001 \mathrm{U}} 0$			
${ }_{\text {col }}^{\text {Cadmium, Total }}$ Chromium, Total	${ }^{0.005}$	${ }^{0.0010}$	${ }^{0.000233}$	${ }^{0.0001 \mathrm{U}}$	${ }^{0.000331 J}$	0.00028 ${ }^{\text {a }}$	${ }^{0.0010}$	${ }^{0.001 U}$	${ }^{0.001 \mathrm{U}}$	${ }^{0.0010}$	${ }^{0.0010}$	${ }^{0.001 U}$	${ }^{0.0010}$	${ }^{0.0010}$	${ }^{0.0010}{ }_{0}^{0.022}$
${ }_{\text {che }}^{\text {chromum, }}$ Cotal	0.1 0.006	0.002 U 0.0014	0.0020	0.0018	0.00013	${ }_{0}^{0.002015}$	${ }_{0}^{0.0002088}$	${ }_{0.0002 J}^{0.0020}$	${ }_{0}^{0.0071}$	${ }^{0.000234,}$	${ }^{0.0002616 J}$	${ }_{0}^{0.00217}$	0.004	0.00099	0.00038 J
Fluoride (m/L)	4	0.39	0.5	0.53	0.41	0.4	0.46	0.16	0.13	0.13	0.14	0.11	0.14	0.12	0.14
Lead, Total	0.015	0.00025 J	0.0028	0.0011	0.00056	0.00084 ${ }^{\text {, }}$	${ }^{0.0014}$	${ }^{0.0014}$	0.0036	${ }^{0.0003 J}$	${ }^{0.0014}$	0.0003 J	0.0016	0.00026,	${ }^{0.0014}$
Lithium, Total	0.04	0.083	0.078	0.077	0.092	0.088	0.092	${ }^{0.005 ~} \mathrm{U}$	${ }^{0.0047 J}$	0.005	0.005	0.0061	0.0048 J	$0.0034)$	0.005 U
Mercury, Total	${ }^{0.002}$	${ }^{0.0002 \mathrm{U}}$	${ }^{0.0002 \mathrm{U}}$	${ }_{0}^{0.0002 \mathrm{U}}$	${ }^{0.0002 \mathrm{U}}$	${ }^{0.0002 \mathrm{U}}$	${ }^{0.0002 \mathrm{U}}$	${ }^{0.00020} 0$		${ }_{\text {O }}^{0.0002 U}$	${ }_{\substack{0.0002 U \\ 0.0053}}^{0.000}$		${ }_{0}^{0.00020}{ }^{0.002 J}$	${ }_{\text {a }}^{0.00028 J}$	${ }^{0.000020} \begin{aligned} & 0.0018 J\end{aligned}$
Molybdenum, Tota Selenium, Total	0.1 0.05	${ }^{0.047}$	$\begin{aligned} & 0.52 \\ & 0.005 \cup \end{aligned}$	${ }_{0}^{0.0051}$	${ }_{0}^{0.0054}$	0.465 0.005	${ }_{0}^{0.005}$	${ }^{0.00085}{ }_{0} 0.05 \mathrm{U}$	${ }_{0}^{0.0072}$0.005	${ }^{0.00051}$	0.0053 0.005	${ }^{0.00285}{ }_{0}^{0.005}$	${ }^{0.0042 J} \begin{aligned} & 0.005 \\ & u\end{aligned}$	${ }_{0}^{0.00285}{ }_{0}$	${ }^{0.00018 \mathrm{~J}} 0$
Thallium, Total	0.02	0.00018 1	0.00025 ,	${ }_{0}^{0.0014}$	0.00056	0.00019	${ }_{0}^{0.0014}$	${ }_{0}^{0.0014}$	0.001 U	0.001 u	0.001 U	${ }_{0}^{0.0014}$	0.00037	${ }_{0} 0.0014$	${ }_{0} 0.0014$
Ratiological (pCi/L)															
${ }_{\text {Radium-226 }} \begin{aligned} & \text { Rediu-228 }\end{aligned}$	NA		0.233 ± 0.111 $0.245+0.364$	0.044 ± 0.145 $0.479+0.05$ 0.0	(0.141U 0.0 .108	$0.122 \cup \pm 0.121$ $0.0643 \cup+0.294$	(0.107U 0.0091	0.624 ± 0.372 $0.786+0.365$ 1.0	3.79 ± 0.629 $.45+0.676$	-0.738 ± 0.175 $0.348 \pm+0.268$	($\begin{aligned} & 0.313 \pm 0.126 \\ & 0.323 \\ & 0.00 .344\end{aligned}$		${ }^{0.8022} 0.203$	-0.476 ± 0.141 0.187	0.194 ± 0.105 $0.364+034$ 0.
Radium-2268228	5	$0.250 \cup \pm 0.381$	$0.467 \mathrm{U} \pm 0.381$	$0.883 \pm \pm 0.43$	$0.557 \mathrm{U} \pm 0.395$	$0.186 \mathrm{U} \pm 0.318$	${ }_{0} \mathrm{O} 262 \cup \pm 0.3$	1.41 ± 0.521	${ }_{6.25}^{2}+0.923$	$1.09 \pm \pm 0.32$	${ }^{0.636] ~}+0.366$	${ }_{2}^{1.15 \pm 0.623}$	(1.861 +0.997	边	
Field Parameters															
Temperature (Deg C)		16.24	13.03		16.9			19.57			16.16	19.58			
Dissolved oxyen, Field (mmsl)	${ }_{\text {Na }}$	${ }_{\text {a }}^{\text {0.212 }}$	1.24 0.96062	0.33 1.35	0.15 0.97687	0.15 0.97687	0.21 1.0496	0.0.29838	(0.888	${ }_{0}^{0.059}$	0.0.44	1.88 0.39503 1	0.01 0.42	- 0.03	(0.22
${ }_{\text {conel }}^{\text {Conductivit, Field (}(\mathrm{ms} / \mathrm{cm})}$	NA NA	${ }_{\substack{1.2138 \\ 23.1}}^{\text {a }}$	0.19602 135.8	- 1.34 .3	${ }_{0}^{0.97687}$	${ }_{0}^{0.97687}$	${ }_{\text {c }}^{1.0496}$	-118.5	$\stackrel{\text { - }}{\substack{0.39016}}$	-101.4	-125.6	${ }_{15.3}^{0.3503}$	${ }_{-8.2}$		-25.3
Turbidity, field (NTU)	na	14.1	87.23	57.31	0.14	0.14	0	14.76	61.4	63.39	0.12	2.19	0	9.76	20.3
ph, Field ((su)	NA	7.58	7.48	7.06	7.68	7.68	7.66	7.46	7.59	7.42	7.4	7.25	7.32	7.33	7.31

ABbREVIATIONS AND Notes:
CCR: Coal Combution Residual
${ }^{\text {CCR: Coal Combustion Resid }}$

sivit sandard units
Uspea: united state
UsPPA: United States Enviro
Results in bold a are edececte.
Usspa. 2016. Fina R Rue: Disposal of Coal Con
from Iecticticutives

	$\begin{gathered} \text { Action Level } \\ \hline \text { Maximum } \\ \text { Contaminant } \\ \text { Cevel/ Regional } \\ \text { Screening Level } \end{gathered}$	WAPP.5D WAP.50 11202123 180-12020 180-117-9	$180 \cdot-119934 \cdot 3$	WAP-5D WAP-5D-2021043 $04 / 13 / 2021$ 18012020 180-120201-5			$\begin{gathered} \text { WAPP-51 } \\ \text { WAP-5I-20210302 } \\ 0302 / 2021 \\ 180-117934-2 \\ \hline \end{gathered}$	180-120201-4	 180-121261-5
Calcium, Total	NA	47	47				42	${ }^{36}$	
Chloride (mg/L)	na	20	$20.1+$	21	21	${ }^{23}$	$22 \mathrm{~J}+$	${ }^{23}$	${ }^{23}$
Fluride (m / L)	4	0.092 J	0.14 U	0.12	0.15	0.1	0.15 J+	0.13	${ }^{0.14}$
Sulfate (mg/L)	na	42	$45.1+$	${ }^{43}$	43	58	57 J+	44	${ }^{43}$
OH (lab) (su)	Na	${ }_{7}^{721}$	${ }^{7.51}$	${ }_{7}^{7.71}$	${ }^{81}$	${ }^{7.51}$	${ }^{7.51}$	7.61	7.51 190
Total Dissolved Solids (TDS) (mm/)	NA	220	220	280	240	240	220	310	190
Assessment Monitoring - EPA Appendix V Constituents (mg/L)									
Arsenic, Total	0.01	0.041	${ }_{0}^{0.015}$	${ }_{0}^{0.014}$	${ }_{0}^{0.01}$	${ }_{0}^{0.0038}$	0.019	0.007	${ }_{0}^{0.0034}$
Barium, Total	2	0.25	0.22	${ }_{0.23}$	0.22	0.14	0.14	0.11	0.1
Beryllum, Total	0.004	${ }^{0.0014}$	${ }^{0.0014}$	0.001 U	${ }^{0.0021 ~}$	${ }^{0.0014}$	0.001 U	0.001 U	0.001 U
Cadmium, Total	0.005	0.001 U	${ }^{0.0014}$						
Chromium, Total	0.1	${ }^{0.0020 ~}$	${ }^{0.0020 ~}$	${ }^{0.002 U}$	${ }^{0.0020 ~}$	${ }^{0.0020 ~}$	${ }^{0.0020 ~}$	${ }^{0.0020 ~}$	${ }^{0.002020}$
Cobalt, Total	0.006	0.00028 J	0.0005 U	$0.00036]$	0.0005 U	0.0005	0.00099	0.00092 J	0.00032 J
Fluoride (mg / L)	4	0.092 J	0.14 U	0.12	0.15	0.1	0.15 J+	${ }^{0.13}$	0.14
Lead, Total	0.015	0.000711	0.000641	0.00054 ,	0.001 U	${ }^{0.0014}$	0.0011	0.00014,	${ }^{0.0014}$
Lithium, Total	0.04	$0^{0.005 ~ U ~}$	${ }^{0.005 ~ U ~}$	0.005 U	${ }^{0.005 ~ U ~}$	0.0054	${ }^{0.0042 J}$	0.005 U	0.005 U
Mercury, Total	${ }^{0.002}$	0.0002U	0.0002U	${ }^{0.00020}$	${ }^{0.00020}$	-0.002U	0.0002U	0.0002U	${ }^{0.00020} 0$
${ }_{\substack{\text { Molvbdenum, Total } \\ \text { Selenium, Total }}}$	0.1 0.05	${ }^{0.0002 \mathrm{~J}} 0$	${ }_{\substack{0.0041 J \\ 0.005}}$	${ }_{0}^{0.0042 J}$ 0.005 ${ }^{\text {U }}$	${ }_{0}^{0.00941 \mathrm{~J}}$	0.002 J 0.005 U	c.0.002J ${ }_{0}^{0.005}$	${ }^{0.00095}$ j	${ }^{0.00095}$ j
Thallium, Total	0.002	0.001 u	0.001 U	0.001 U	0.0014	0.001 u	0.001 u	0.001 u	0.001 U
$\left\lvert\, \begin{aligned} & \text { Radium-228 } \\ & \text { Radium-226 \& } 228\end{aligned}\right.$	NA 5	(1.2000.35	($\begin{aligned} & 0.705 \mathrm{U} \pm \pm .318 \\ & 1.11 \mathrm{U} \pm 0.345\end{aligned}$	$0.422 \cup \pm 0.292$ 0.720 ± 0.315					(e.933 +0.346
Dissolved oxyen, Field ($\mathrm{mm} / \mathrm{L})$	NA	0.0.17	${ }^{0.11}$	${ }_{0}^{0.32733}$	${ }^{0.2 .26}$	${ }^{0.15}$	0	0.111	0.23
${ }^{\text {conendectivy, Field }(m s / m)}$	${ }_{\text {NA }}$		${ }_{\text {-101.7 }}^{0.4 .4}$	${ }_{-12.9}^{0.3273}$	${ }_{\text {-83.2 }}^{0.3933}$	${ }_{\text {- }}^{0.8}$	- 0.41 .7		${ }_{\text {-12.9 }}^{0.3309}$
Turbidity, Field (NTU)	NA	${ }^{25.51}$	0.92	1.47	0	${ }_{8.28}^{18}$	14.58	${ }_{1.53}$	0
pH, Field (su)	NA	7.22	7.26	6.99	7.28	7.13	7.19	7.11	7.22

ABbREVATIONS AND Notes:
CCR Coal Combustion Residuals
cCR: Coal Combustion Resid

sivit sandard units
Uspea: united state
Sespats in intod are are edectected.
USEPA. 2016. Final Ruve: Disposal of Coal Con

			WAP-CD BLIND DUPLCATE-20201014 1014/42020 $240-138296-4$		180-116381-1	$\begin{gathered} \text { WAP-6D } \\ \text { WAP-6D-20210414 } \\ 04 / 14 / 2021 \\ 180-120201-8 \\ \hline \end{gathered}$		WAP-61 WAP-6A-20201014 $10 / 14 / 2020$ $240-132266-2$	$\begin{array}{\|c\|} \hline \text { WAP-61 } \\ \text { WAP- } 61-20201124 \\ 112 / 2 / 2020 \\ 180-114118-2 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { WAP-61 } \\ \text { WAP-6-1-2021019 } \\ 01 / 18 / 2021 \\ 180-116381-2 \\ \hline \end{array}$		WAP-61 WAP- 6 -202010414 $04 / 14 / 2021$ $180-120201-7$	$180-121261-7$
Detection Monitoring- EPA Appendix II Constituents (mg/L) Boron, Total													
Brono, Total Calcium, Total	NA	${ }_{0}^{0.051}$	0.05 40	${ }^{0.095}$	${ }_{41}^{0.088}$	${ }_{38}^{0.080}$	${ }_{41}^{0.160}$	${ }_{41}^{0.098}$	0.15 49	${ }_{43}^{0.098 \cup}$	${ }_{45}^{0.097}$	${ }_{38}^{0.080}$	${ }^{0.160}$
chloride (m/L)	NA	16	16	19	19	22	21	19	23	23	23	${ }_{24}$	23
Fluride (mg/L)		0.14	0.14	0.14	0.13	0.14	0.15	0.15	0.12	0.14	0.15	0.14	0.16
Sulfate (mg / L)	NA	${ }^{40}$	40	${ }^{42}$	43	39	40	43	52	59	51	${ }^{43}$	43
pH (lab) (su)	NA	7.71	${ }_{5}^{5.51}$	${ }^{7.919}$	7.45 200	${ }_{7}^{7.81}$	${ }^{7.81}$	${ }^{7.61}$	7.41	$\begin{array}{r}7.45 \\ \hline 25\end{array}$	${ }^{7.65}$	7.71	7.81 198
Total Dissolved Solids (TDS) (mzl)	NA	200	200	230	220	210	210	210	240	250	230	220	190
Assessment Monitoring - EPA Appendix IV Constituents (mg/L)	0.006	${ }^{0.002 U}$	0.002 U	${ }^{0.002 U}$	${ }^{0.002 U}$	${ }^{0.002 U}$							
Arsenic, Total	0.01	0.0057	0.006	0.0048	0.0063	0.0058	0.0055	0.0043	0.0037	0.0052	0.0067	0.0042	0.0038
Barium, Total		0.18	. 18	0.17	0.2	0.2		0.14	0.14	0.15	0.14	0.13	0.12
Beryllum, Total	0.004	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.001 ~} \mathrm{U}$	0.00027 J	${ }^{0.001 ~}$	0.00034 J	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.001 ~}{ }^{\text {U }}$	${ }^{0.001 ~}{ }^{\text {U }}$	${ }^{0.0014}$
Cadmium, Total	0.005	0.001 U	0.001 U	0.001 U	${ }^{0.0014}$	${ }^{0.0014}$	0.001 u	0.001 U	0.001 U	0.001 U	${ }^{0.0014}$	${ }^{0.0014}$	0.001 U
Chromium, Total	0.1	${ }^{0.002 ~ U ~}$	${ }^{0.002 ~ U ~}$	0.002 U	${ }^{0.002 ~ U ~}$	0.002 U	${ }^{0.002 ~ U ~}$	${ }^{0.002 ~ U ~}$	0.002 U	${ }^{0.002 ~ U ~}$	${ }^{0.002 ~ U ~}$	0.002 U	0.002 U
Cobalt, Total	0.006	${ }^{0.0014}$	${ }^{0.0014}$	0.00019	0.0005 U	0.00018 J	0.0005 U	${ }^{0.0003 J}$	0.00035 J	0.0027 J	${ }^{0.00052}$	0.0026 J	${ }^{0.00024}$
Fluoride (mg/L)	4	0.14	0.14	0.14	0.13	0.14	0.15	0.15	0.12	0.14	0.15	0.14	0.16
Lead, Total	0.015	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.00014 J}$	${ }^{0.0010}$	${ }^{0.0010}$	${ }^{0.0010}$	${ }^{0.00017 J}$	0.00055	${ }^{0.001 U}$	${ }^{0.0014}$
${ }^{\text {Lithium, Total }}$	0.04	${ }^{0.0023 J}$	${ }^{0.00191}$	${ }^{0.0055}$	0.005 U	0.005 U	${ }^{0.0055}$	${ }^{0.00333}$ J	${ }^{0.0056}$	${ }^{0.00048}$ J	${ }^{0.0051}$	${ }^{0.0036 J}$	${ }^{0.00393)}$
Mercur, Total Molybdenum, Total	0.002 0.1	${ }_{0}^{0.00023}$ 0,		${ }_{0.012}^{0.0020}$			${ }_{0}^{0.0002 \mathrm{U}}$	${ }_{0}^{0.00063}$	${ }_{0}^{0.00020} 0$		${ }_{0}^{0.00089}$	${ }_{0}^{0.00020}$	${ }_{0}^{0.00063}$
Selenium, Total	0.05	0.005	0.005	0.005	0.005	0.005	${ }^{0.005 ~} \mathrm{U}$	$0.005 \cup$	0.005	0.005	$0.005 \cup$	0.005 u	0.005 U
Thallium, Total	0.002	0.0026 J	0.001 U	0.00018 J	0.001 U	0.00047	0.001 U	0.00028	0.00029 J	0.001 U	0.001 U	0.001 U	0.001 U
Radiological (pCi/L) Radium-226			$0.219 \cup \pm 0.196$	0.459 $\ddagger 0.37$	0.460 ± 0.132	0.277 ± 0.119	0.269 ± 0.119	0.361 ± 0.21	$0.172 \cup \pm 0.297$	0.163 ± 0.0	0.242 ± 0.128	0.182 ± 0.104	0.133 ± 0.0934
Radium-228	NA	${ }_{0}^{0.597 \pm 0.313}$	$0.277 \cup \pm 0.304$	$\stackrel{-0.128}{-} \pm \pm 0.26$	- $0.318 \cup \pm 0.325$	$0.0892 \cup \pm 0.222$	${ }_{0}^{0.875 \pm} \pm 0.348$	${ }^{0.472 \pm \pm 0.287}$	${ }_{0}^{0.1720 \pm 0.297} 0$		(0.182 ± 0.104 $0.138 \cup 0.268$	
Radium-2268 228	5	0.907 ± 0.369	$0.496 \cup \pm 0.362$	$0.459 \cup \pm 0.452$	$0.779 \pm \pm 0.351$	0.367 U ± 0.252	1.14 ± 0.368	0.833 ± 0.356	$0.700 \pm \pm 0.402$	$0.168 \mathrm{UJ} \pm 0.263$	$0.434 \pm \pm 0.288$	$0.321 \mathrm{UJ} \pm 0.287$	$0.362 \mathrm{U} \pm 0.306$
Field Parameters													
	${ }_{\text {NA }}$	${ }^{24.68} 0.33$	${ }_{\text {24.63 }}^{24}$	15.09 0.63	17.83 0.2	17.64 0.35	18.31 0.27	${ }_{0}^{17.24} 0.14$	18.6 0.86	${ }_{0.36}^{16.2}$	16.46 7.6	18.41 0.18	18.26 0.22
Conductivity, Field ($m \mathrm{~s} / \mathrm{cm}$)	na	0.17372	0.17372	0.30028	${ }^{0.3899}$	0.32423	${ }^{0.25823}$	0.18813	0.39808	0.43012	${ }_{0} 0.41158$	${ }^{0.35075}$	${ }_{0}^{0.38899}$
ORP, Field ($\left(\mathrm{vV}\right.$ (${ }_{\text {Tur }}$	Na	-127.9	-127.9	-10.4	50.1	${ }^{63}$	-07.3	91.9	-39.5	33 3	62.3 54.86	51.7	56.5 0.
(tut, field (su)	$\stackrel{\text { NA }}{ }$	c. 7.02	l. 7.02	7.49	7	7.23	7.76	6.98	7.41 1.97	3.77 6.79	s.3. 9.32	7.3	7.08

AB8REVIATIONS AND Notes:
CCR: Coal Combustion Residual
CCR: Coal Combustion Resi
mel: milligam per lier.

sivit sandard units
Uspea: united state
USPPA: United States Envio
Results in bold a are efectece.
Usspa. 2016. Fina R Rue: Disposal of Coal con
from Iecticticutives

ClosURE/POSTT-CL
WEST SAH
EB. CUUEV GND
GNER

f.e. CuIur Generating station
NewBurgh in

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \[
\begin{array}{|c|}
\hline \text { Action Level } \\
\hline \text { Conximum } \\
\text { Contaninant } \\
\text { Level Reigional } \\
\text { Screening Level }
\end{array}
\] \& 240-138296-1 \& \& 180-116381-3 \& \[
180-117674 \cdot 3
\] \& \& \begin{tabular}{l}
 \\
180-120201-6
\end{tabular} \& 180-121261-6 \& \begin{tabular}{|c|}
\hline \multicolumn{1}{c}{ Downgradient } \\
WAPPS \\
BLIND DUPLCATE-20210504 \\
05/04/2022 \\
\(180-121261-12\)
\end{tabular} \& \[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\text { WAP } \\
121012020 \\
180-14991-1 \\
\hline
\end{array}
\] \& \& \& BLIND DUPLICATE-20210303 03/03/2021 180-117934-7 \& \& \[
\begin{array}{|c|}
\hline \text { WAPP-7D } \\
\text { WAP-7D-20210506 } \\
05506 / 2021 \\
180-121360-7 \\
\hline
\end{array}
\] \\
\hline Detection Monitoring - EPA Appendix III Constituents (m/L) Boron, Total \& NA \& 1.2 \& 2.3 \& 2.2 \& 0.1 \& \({ }^{3.1}\) \& \& 2.9 \& \& 14 \& 15 \& 15 \& 15 \& 14 \& 15 \\
\hline Calcium, Total \& na \& 87 \& \({ }_{89}\) \& \({ }_{92}\) \& 45 \& 110 \& \({ }_{95}\) \& 120 \& 120 \& 440 \& 450 \& 440 \& 440 \& \({ }_{410}^{14}\) \& \({ }_{450}\) \\
\hline Chloride (mg/L) \& NA \& \({ }^{31}\) \& 29 \& 32 \& 19 \& \({ }^{36}\) \& \({ }^{37}\) \& \({ }^{36}\) \& \({ }^{40}\) \& 210 Jt \& \({ }^{220}\) \& 200 Jt \& 200 + \& \({ }^{200}\) \& \({ }^{210}\) \\
\hline Fluoride (mg/L) \& 4 \& \({ }^{0.48}\) \& \({ }^{0.49}\) \& \({ }^{0.41}\) \& \({ }^{0.29}\) \& \({ }^{0.43}\) \& \({ }^{0.44}\) \& \({ }^{0.45}\) \& \({ }^{0.48}\) \& \({ }^{0.41}\) \& 0.49
1200 \& 0.57 \& 0.57 \& 0.36

1100 \& 0.43
1200

\hline | Sulfate (mg/L) |
| :--- |
| pH (lab) (su) | \& NA

NA \& 130
7.45 \& 100
7.3 \& 120
7.25 \& 43
7.71 \& 130
7.45 \& 130
7.45 \& 150
7.65 \& 160
6.9 \& 12005
7.65 \& 1200
7.51 \& 1300 +
7.45 \& \& 1100
7.8 \& 1200
7.71

\hline Total Dissolve Solids (TSS) (mg/) \& NA \& 450 \& 410 \& 470 \& 220 \& 490 \& 500 \& 540 \& 520 \& 2200 \& 2200 \& ${ }_{2200}$ \& 2200 \& 2100 \& 2200

\hline Assessment Monitoring - EPA Appendix V Constituents (mg/L) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Antimony, Total \& 0.006 \& 0.02 U \& 0.022 U \& 0.000661 \& 0.00043 J \& ${ }^{0.002 U}$ \& 0.002 U \& ${ }^{0.002 U}$ \& 0.002 U \& ${ }^{0.002 U}$ \& ${ }^{0.002 U}$

\hline Arsenic, Total \& 0.01 \& 0.00092 J \& 0.00083 J \& 2046 \& \& ${ }^{0.003}$ \& 0.00074 \& ${ }^{0.000899}$ \& 0.00093 \& ${ }^{0.0045}$ \& ${ }^{0.0044}$ \& 0.0019 \& \& ${ }^{0.0018}$ \& ${ }^{0.0019}$

\hline Barum, \& ${ }_{0} 0.004$ \& ${ }^{0.0082}$ \& ${ }^{0.0063}$ \& 0.00099 \& ${ }_{0}^{0.0014}$ \& 0.011
$0.0021 J$ \& 0.0014 \& 0.0014 \& -0.001U \& ${ }^{0.00018 J}$ \& ${ }^{0.0087}$ \& ${ }_{0}^{0.0014}$ \& ${ }^{0.0014}$ \& 0.058
0.001 u \& -0.001U

\hline Cadmium, Total \& ${ }_{0} 0.005$ \& ${ }^{0.0014}$ \& ${ }^{0.0014}$ \& ${ }_{0}^{0.0014}$ \& 0.001 u \& ${ }^{0.000233}$ \& 0.001 U \& 0.001 u \& ${ }^{0.0014}$ \& ${ }_{0} 0.0014$ \& ${ }^{0.0014}$ \& 0.001 u \& ${ }^{0.0014}$ \& ${ }^{0.0014}$ \& ${ }^{0.0014}$

\hline Chromium, Total \& 0.1 \& ${ }^{0.002 U}$ \& 0.002 U \& 0.0093 \& 0.0035 \& 0.0051 \& 0.002 U \& 0.002 U \& 0.002 U \& 0.0033 \& 0.0027 \& 0.002 U \& ${ }^{0.0015 J}$ \& ${ }^{0.002 U}$ \& 0.002 U

\hline Cobalt, Total \& 0.006 \& 0.0016 \& 0.0014 \& 0.0069 \& 0.00093 \& 0.0037 \& 0.0013 \& 0.001 \& 0.0011 \& 0.016 \& 0.017 \& 0.011 \& 0.011 \& 0.0078 \& 0.0074

\hline \& $\stackrel{4}{0.015}$ \& (0.48 \& 0.0.49 \& - $\begin{aligned} & 0.41 \\ & 0.0062\end{aligned}$ \& -0.29 \& - 0.0 .43 \& \& ($\begin{gathered}0.45 \\ 0.00014,\end{gathered}$ \& (0.48 \& - ${ }_{0}^{0.41}$ \& -0.0033 \& -0.0.57 \& 0.57
0.0014 \& 0.0.36 \& (0.43

\hline Lithium, Total \& ${ }_{0}^{0.04}$ \& 0.0024 J \& 0.0041J \& 0.0011 \& 0.0000 \& ${ }_{0}^{0.00268}$ \& ${ }^{0.00054}$ \& 0.004 ${ }^{\text {0.0.0. }}$ \& ${ }^{0.0041 J}$ \& ${ }_{0}^{0.066}$ \& ${ }_{0}^{0.061}$ \& ${ }_{0}^{0.071}$ \& ${ }_{0}^{0.071}$ \& 0.06 \& 0.067

\hline Mercurr, Total \& ${ }^{0.002}$ \& ${ }^{0.00020}$ \& ${ }^{0.0002 U}$ \& ${ }^{0.0002 \mathrm{U}}$ \& 0.0002 U \& ${ }^{0.00020}$ \& ${ }^{0.0002 U}$ \& ${ }^{0.00020}$ \& ${ }^{0.0002 U}$ \& ${ }^{0.00020}$ \& ${ }^{0.0002 U}$ \& ${ }^{0.0002 \mathrm{U}}$ \& ${ }^{0.0002 \mathrm{U}}$ \& 0.0022 \& ${ }^{0.0002 U}$

\hline Molvbdenum, Total

Selenium, otat \& $$
\begin{aligned}
& 0.1 \\
& 0.05 \\
&
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.16 \\
& 0.0050
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.18 \\
& 0.0050
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.177 \\
& 0.0054
\end{aligned}
$$

\] \& | 0.0029 |
| :--- |
| 0.005 | \& \[

$$
\begin{aligned}
& 0.14 \\
& 0.005 \mathrm{u}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.16 \\
& 0.0050
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.16 \\
& 0.0050
\end{aligned}
$$

\] \& ${ }_{0}^{0.160}$ \& \[

$$
\begin{aligned}
& 0.28 \\
& 0.0050
\end{aligned}
$$

\] \& 0.0.34 \& \[

$$
\begin{gathered}
0.52 \\
0.005 \cup
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.52 \\
& 0.0050
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.29 \\
& 0.005 \mathrm{u}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0.3 \\
0.005
\end{gathered}
$$
\]

\hline Thallium, Total \& 0.002 \& 0.0014 \& 0.0014 \& 0.0014 \& 0.00037 J \& 0.000411 \& 0.001 U \& 0.0014 \& 0.001 U \& 0.000211 \& 0.00015) \& 0.001 U \& 0.001 U \& 0.00017 J \& 0.001 U

\hline ${ }^{\text {Radiological }}$ (1) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline ${ }_{\text {Radium-226 }}^{\text {Radium-228 }}$ \& NA \& | $0.204 \pm \pm 0.156$ |
| :---: |
| 0.443 ± 0.244 | \& $0.193 \cup \pm 0.311$

$0.478 \cup \pm 0.339$ \& | 0.212 ± 00.133 |
| :--- |
| $0.285 \cup \pm 0.42$ | \& ($\begin{gathered}0.293 \\ 0.977 \pm 0.142 \\ 0.345\end{gathered}$ \& (0.150u 0.0113 \& | $0.0672 \cup \pm 0.0728$ |
| :---: |
| $0.379 \cup 0.284$ | \& 0.162 ± 0.109

0.606 ± 0.332 \& (0.101u0.0893 \& 0.585 ± 0.331 \& ± 0.187 \& 0.563 ± 0.172
0.878 UJ +0.425 \& 0.563 ± 0.176 \& (0.470 0.1.43 \& (0.454 0.1.166

\hline Radium-2268228 \& 5 \& 0.647 J 0.29 \& 0.672 ± 0.46 \& 0.497 U ± 0.441 \& 1.09 ± 0.373 \& $0.765 \pm \pm 0.334$ \& 0.446 0.0 .93 \& 0.768 ± 0.349 \& 0.519 ± 0.296 \& $0.717 \mathrm{U} \pm 0.639$ \& $0.961 \pm \pm 0.417$ \& 1.44 U ± 0.458 \& 1.27 U ± 0.447 \& 1.35 ± 0.35 \& 0.941 ± 0.334

\hline Field Parameters \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Temperature (Deg C) \& NA \& 18.27 \& \& \& \& \& 18.46 \& 18.75 \& 18.75 \& 10.3 \& 13.29 \& 19.24 \& 19.24 \& 17.06 \& 16.73

\hline \& ${ }_{\text {NA }}$ \& $\stackrel{0}{0.3632}$ \& 0.64084 \& $\stackrel{0}{0.73568}$ \& 1.18
0.37063 \& 0.16
0.86615 \& 0.09
0.7597 \& 0.2
0.84196 \& -0.29 \& 0.08
2.3922 \& (0.05 \& 1.62
4.02 \& 1.62
4.02 \& 0.0585 \& 0.23
2.603

\hline \& NA \& ${ }_{\substack{0.36342 \\-10.2}}^{\text {0, }}$ \& ${ }^{0.64084}$ \& ${ }^{0.73568}$ \& ${ }^{0.377063}$ \& ${ }_{\text {cher }}^{0.86615}$ \& ${ }_{\text {c }}^{0.75597}$ \& ${ }_{0}^{0.8496}$ \& ${ }_{0}^{0.8496}$ \& (2.3922 \& ${ }_{122}^{2.545}$ \& ${ }_{58.5}^{4.02}$ \& ${ }_{58.5}^{4.02}$ \& ${ }_{\substack{\text {-13.3 }}}^{\text {2.0385 }}$ \& 2.603
29.9

\hline Turbidity, field (NTU) \& NA \& 14.46 \& 7.89 \& 223.33 \& 100.73 \& 467.76 \& 17.65 \& ${ }_{2.33}$ \& ${ }_{2} .33$ \& 113.87 \& 140.21 \& ${ }_{25.26}$ \& ${ }_{25.26}$ \& 2.5 \& ${ }_{0} 0.22$

\hline ph, Field (su) \& NA \& 7.17 \& 7.18 \& 6.84 \& 7.47 \& 6.89 \& 7.01 \& 6.79 \& 6.79 \& 7.32 \& 7.46 \& 7.19 \& 7.19 \& 7.27 \& 7.11

\hline
\end{tabular}

ABbRUVATIONS AND Notes:
cCR: Coal Comustion Residuals.
CCR: Coal Combustion Resid
m / L miligram per iter.

sivi sandard units
USPPA: United 5 tate
Respat United States Envirod

		$\begin{gathered} \text { WAPP-75 } \\ \text { WAP-75-20202123 } \\ 112(2) 2020 \\ 180-11418-4 \\ \hline \end{gathered}$	WAP-75 BLIND DUPLCATE-20201123 $11 / 23 / 2020$ $180-114118-5$	$\begin{gathered} \hline \text { WAP-75 } \\ \text { WAP-75--720114 } \\ 01 / 1 / 2021 \\ 180-1121636-2 \\ \hline \end{gathered}$	$\begin{gathered} \text { WAP-75 } \\ \text { WAP-75-20210303 } \\ 03 / 30 / 2021 \\ 180-117934-5 \\ \hline \end{gathered}$	$\begin{gathered} \text { WAP-75 } \\ \text { WAP-7S-72020415 } \\ 0415 / 2021 \\ 180-120201-9 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { WAP-7S } \\ \text { WAP-7S-720210506 } \\ 0506 / 2021 \\ 180-121360-6 \\ \hline \end{gathered}$	WAP-8D WAP.80 1202021201 $180-12020$ $180-12491-2$		WAP-8D BLIND DUPLCATE-20210119 01/19/2021 $180-116381-7$	$\begin{array}{\|c\|} \hline \text { WAPP-8D } \\ \text { WAP-8D-20210224 } \\ 022 / 2 / 2021 \\ 180-117674-6 \\ \hline \end{array}$		$\begin{gathered} \text { WAP-8D } \\ \text { WAP-8D-20210504 } \\ 0500 / 2021 \\ 180-121261-11 \\ \hline \end{gathered}$		$\begin{gathered} \text { WAPP-81 } \\ \text { WAP-8P-120210119 } \\ 01 / 1 / 20221 \\ 180-116381-5 \\ \hline \end{gathered}$
Detection Monitoring - EPA Appendix III Constituents (mg/L) Boron, Total Calcium, Total Chloride (mg / L) Fluoride (mg / L) Sulfate (mg/L) pH (lab) (su) Total Dissolved Solids (TDS) (mg/L)	NA NA NA 4 NA NA NA	$\begin{aligned} & 16 \\ & 310 \\ & 160 \\ & \hline .29 \\ & \hline 60 \\ & 6.60 \\ & \hline 600 \\ & \hline 160 \end{aligned}$	$\begin{aligned} & 13 \\ & 300 \\ & 100 \\ & 0.26 \\ & 5.710 \\ & 7.81 \\ & 1300 \end{aligned}$	$\begin{aligned} & 16 \\ & 210 \\ & 100 \\ & 10.22 \\ & 0.00 \\ & 9.31 \\ & 960 \\ & 960 \end{aligned}$	$\begin{gathered} 5.5 \\ 78 \\ 78.5+ \\ \hline 0.61 \\ \hline 10.1+4 \\ 8.31 \\ 380 \\ \hline \end{gathered}$	$\begin{aligned} & 14 \\ & 160 \\ & 89 \\ & 0.2 \\ & 810 \\ & 810 \\ & 880 \\ & 88 \end{aligned}$	$\begin{aligned} & 12 \\ & 1120 \\ & 85 \\ & 0.39 \\ & 1.310 \\ & 8.4 \\ & 840 \end{aligned}$	$\begin{aligned} & 0.07 \mathrm{~J} \\ & 39 \\ & 14.5 \\ & \hline 0.21 \\ & \hline 3.81 \\ & 7.81 \\ & 200 \end{aligned}$	$\begin{gathered} 39 \\ 16 \\ 0.15 \\ 51 \\ 7.5 \mathrm{~J} \\ 230 \\ \hline \end{gathered}$	0.09 U 40 16 0.14 51 7.51 180	0.089 45 17 0.14 47 7.71 230	$\begin{gathered} 0.0870 \\ 42 \\ 20 \\ 0.15 \\ 51 \\ 7.81 \\ 240 \\ \hline \end{gathered}$	0.16 U 50 20 0.17 56 7.4, 220	$\begin{aligned} & 0.12 \\ & 45 \\ & 20.1 \\ & \hline 0.25 \\ & \hline 8.85 \\ & \hline 8.81 \\ & 240 \end{aligned}$	$\begin{aligned} & 0.110 \\ & 49 \\ & 23 \\ & 0.21 \\ & \hline 61 \\ & 7.31 \\ & 250 \\ & 250 \end{aligned}$
	0.006 0.01 2 0.004 0.005 0.01 0.006 4 0.015 0.015 0.04 0.02 0.1 0.05 0.002			0.0011 u 0.004 0.059 0.051 u 0.001 u 0.002 U 0.00046, 0.022 0.0034, 0.031 0.002 u 0.027 0.014 0.001 u 0	0.022 U 0.0016 0.062 0.01 U 0.001 U 0.002 U 0.002086 0.061 0.0005 J 0.0 0.002 u 0.034 0.005 U 0.001 U	0.0038 0.001 U 0.001 U 0.00019 J 0.2 0.17 0.0002 U 0.25 0.004 J 0.00021 J			0.002 U $\mathbf{0 . 0 0 3 4}$ 0.065 0.001 U 0.0015 J 0.00087 0.15 0.00096 0.005 U 0.0002 U 0.0014 J 0.005 U 0.001 U	0.002 U 0.066 0.001 U 0.001 U 0.00068 0.14 0.0009 0.005 U 0.0009 J 0.005 U 0.001 U					
Radiological (pCi/L Radium-226 Radium-226 \& 228	$\begin{gathered} \mathrm{NA} \\ \mathrm{NA} \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.992 \mathrm{U} \pm 0.89 \\ 0.820 \mathrm{U} \pm 0.613 \\ 1.81 \pm 1.08 \\ \hline \end{gathered}$	$0.159 U+0.149$ $0.369 \cup \pm 0.359$ $0.528 \mathrm{U} \pm 0.389$	0.186 ± 0.0864 $-0.0470 \cup \pm 0.275$ $0.186 \mathrm{UJ} \pm 0.288$	$0.138 \mathrm{U} \pm 0.105$ $0.673 \mathrm{UJ} \pm 0.401$ $0.811 \mathrm{UJ} \pm 0.415$	0.139 ± 0.0908 0.390 ± 0.241 0.530 ± 0.258	0.211 ± 0.109 $0.631 \mathrm{~J} \pm 0.3$	$0.123 U \pm 0.124$ $0.308 U \pm 0.319$ $0.431 \mathrm{U} \pm 0.342$	$0.0633 \mathrm{U} \pm 0.0727$ $0.326 \mathrm{U} \pm 0.276$ $0.390 \mathrm{U} \pm 0.285$	0.181 ± 0.0998 $0.181 \mathrm{UJ} \pm 0.366$	0.215 ± 0.115 0.1610 ± 0.192 $0.376 \mathrm{~J} \pm 0.224$ $0.36 \mathrm{~J} \pm 0.22$	0.239 ± 0.117 $0.267 \cup \pm 0.227$ $0.505 \mathrm{~J} \pm 0.255$	0.231 ± 0.127 0.605 ± 0.318 0.836 ± 0.342	$0.105 \mathrm{U} \pm 0.12$ $-0.153 \mathrm{U} \pm 0.27$ $0.105 \mathrm{U} \pm 0.295$	0.147 ± 0.0728 0.464 ± 0.278 0.610 ± 0.287 0.610 ± 0.287
Field Parameters Temperature (Deg C) Dissolved Oxygen, Field (mg/L) Conductivity, Field ($\mathrm{mS} / \mathrm{cm}$) ORP, Field (mv) Turbidity, Field (NTU) pH, Field (su)	$\begin{aligned} & N A \\ & \hline \end{aligned}$	$\begin{gathered} 15.97 \\ 0.03 \\ 1.9677 \\ 57.6 \\ 276.47 \\ 5.7 \end{gathered}$	$\begin{aligned} & 16.18 \\ & \begin{array}{l} 1.07 \\ \hline \end{array} .686 \\ & \hline \end{aligned}$	15.45 0.15 1.399 123.4 9.28 0.08	$\begin{gathered} 16.81 \\ 0.02 \\ 0.68 \\ 24.1 \\ 0.76 \\ 8.23 \end{gathered}$	$\begin{aligned} & \text { 17.54 } \\ & 0.15 \\ & \hline 1.0133 \\ & -4.3 \\ & 0.14 \\ & 9.14 \end{aligned}$	$\begin{gathered} 16.95 \\ 0.29 \\ 1.1925 \\ 83.7 \\ 0 \\ 8.21 \end{gathered}$	$\begin{gathered} 14.43 \\ 0.12 \\ 0.5988 \\ 0.94 \\ 7.54 \\ \hline \end{gathered}$	$\begin{gathered} 14.18 \\ 0.18 \\ 0.3331 \\ .51 .1 \\ \hline 11.36 \\ 7.15 \\ \hline \end{gathered}$	$\begin{gathered} 14.18 \\ 0.28 \\ 0.6331 \\ .5 .11 \\ 11.36 \\ 7.15 \\ \hline \end{gathered}$	17.5 0.03 0.352 -1352 14.12 7.152	$\begin{gathered} 17.73 \\ \begin{array}{l} 1.28 \\ 0.399 \\ .93 .1 \\ -1.29 \\ 7.29 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 17.97 \\ 0.92 \\ 0.9372 \\ .-115.4 \\ 7.21 \\ 7.21 \end{gathered}$	$\begin{gathered} 13.17 \\ 0.06 \\ 0.30088 \\ .55 .4 \\ 7.45 \\ 7 \end{gathered}$	$\begin{gathered} 13.65 \\ 0.17 \\ 0.4054 \\ .22 .0 \\ 7.08 \\ 7.08 \\ \hline \end{gathered}$

Abbevialions and notes:
CCR: coal Combustion Residual
CCR: Coal Combustion Resid
m / L : miligram per iter.

sivit sandard units
Uspea: united state
uspal
Results in inted data daed edecected.
Envir
Usspa. 2016. Fina R Rue: Disposal of Coal Con
from Iecticticutives

Location Group	Action Level					radient			
	Maximum Contaminant Level/ Regional Screening Lev		WAP-81 WAP-8P-20210414 O4/14/2021 $180-120201-12$					WAP-88 WAP-8P-82020414 $04 / 14 / 2021$ $180-120201-11$	
letection Monitoring - EPA Appendix III Constituents (mg/L)									
${ }^{\text {Broron, Total }}$	NA	0.15	0.14	0.16 U	3	2	2.6	2.2	${ }^{2.3}$
calcium, Total chloride am/IU	NA	52	45	49	120	100	130	110	${ }^{130}$
Chloride (mg/L)	NA	24	23	22	58 J+	49	63	62	57
Fluoride (mE/L)	4	0.2	0.22	0.24	0.11	0.088 J	0.099 J	0.11	0.13
Sulfate (mg/L)	NA	57	57	55	${ }^{220.5}$	${ }^{200}$	${ }^{220}$	${ }^{200}$	${ }^{220}$
PH (lab) (su)	NA	${ }^{8.21}$	7.81	7.71	${ }^{8.21}$	7.90	7.91	7.61	${ }^{81}$
Total Dissolved Solids (TDS) (mgl)	NA	270	250	230	620	600	660	590	590
${ }^{\text {Antimony, }}$ Atal	${ }^{0.006}$	${ }^{0.002 U}$	${ }^{0.002 U}$	${ }^{0.0020 ~}$	${ }^{0.0020}$	${ }^{0.0020}$	${ }^{0.0020}$	${ }^{0.002 ~ U ~}$	${ }^{0.002 \mathrm{U}}$
Assenic, Total	0.01	${ }^{0.0038}$	${ }^{0.0053}$	${ }_{0}^{0.00044}$	${ }_{0}^{0.012}$				
Barium, otal	2	${ }^{0.055}$	0.057	0.053	0.18	0.16	0.2	0.18	0.2
Beryllum, Total	${ }^{0.004}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$	${ }^{0.0014}$
Cadmium, Total	0.005 0.1	${ }_{0}^{0.0002 \mathrm{U}}$	${ }^{0.0002 \mathrm{U}}$	${ }^{0.001 \mathrm{U}}{ }_{0} 0.02 \mathrm{U}$	0.001U	${ }^{0.0001 \mathrm{U}}$	${ }_{0}^{0.0002 \mathrm{U}}$	${ }^{0.0010}$	${ }^{0.0010}$
Cobalt, Total	0.006	${ }^{0.00078}$	0.00051	0.00047 J	0.00088	0.00075	0.00066	0.00041」	0.00035 J
Fluoride (mg/L)		0.2	0.22	0.24	0.11	${ }^{0.088)}$	0.099	0.11	0.13
Lead, Total	0.015	0.00045 J	${ }^{0.0014}$	${ }^{0.0014}$	0.0007	0.0007 J	0.00051 J	0.00016 J	0.001 U
${ }^{\text {Lithium, Total }}$	0.04	${ }^{0.000363}$ J	${ }^{0.0055}$	${ }^{0.0055}$	0.046	${ }^{0.038}$	0.05	0.041	0.046
${ }_{\substack{\text { Mercury, Total } \\ \text { Molybdenum, Total }}}$	0.002 0.1	${ }_{0}^{0.0020}$	${ }_{0}^{0.00024}$	${ }_{0}^{0.00023}$	${ }_{0}^{0.0027}$	${ }_{0}^{0.00026}$	${ }_{0}^{0.0022 \mathrm{U}}$	${ }_{0}^{0.0022 \mathrm{U}}$	${ }_{0}^{0.0024}$
Selenium, Total	0.05	${ }^{0.005}$ U	$0.005 \cup$	0.005 U	${ }^{0.005 u}$	${ }^{0.005}$ U	${ }^{0.005 U}$	${ }^{0.005}$ U	${ }^{0.005 U}$
Thallium, Total	0.002	0.001 u	0.001 U	0.001 u	$0.00024)$	0.001 U	0.001 U	0.001 U	0.001 U
Radiological (pCi/L)									
Radium-226	NA	0.010 ± 0.0969	0.144 ± 0.0999 0.0755	${ }^{0.188 \pm 0.112}$	${ }^{0.343 \pm 0.166}$	0.330 ± 0.12 $0.688 \pm$ a	${ }^{0.416 \pm 0}$	0.177 $0 . .108$	
${ }_{\text {R }} \begin{aligned} & \text { Radium-228 } \\ & \text { Radium-268 } 228\end{aligned}$	NA	(e.159 $\begin{aligned} & 0.0 .27 \\ & 0.260 \cup \pm 0.247\end{aligned}$	((e.57] ± 0.317
Field Parameters									
${ }^{\text {Temperature (} \mathrm{Deg} \mathrm{C}} \mathrm{C}$	NA	16.71	18.55	18.79	7.89	11.58	15.56	17.71	${ }^{17.85}$
- $\begin{aligned} & \text { Dissolved oxygen, Field (} \mathrm{mm} / \mathrm{L}) \\ & \text { Conductivity Fied }(\mathrm{ms} / \mathrm{cm})\end{aligned}$	NA NA	O. 0.22157	0.2 0.4067	0.22241	${ }_{0}^{0.05749}$	-0.4 ${ }_{0}^{0.4275}$	${ }_{0.03668}$	0.1 0.89968	0.19
OR, Field (mv)	NA	-66.8	-67.4	-75	163.2	-32.7	-207.7	-173.4	174.3
Turbidity, Field (NTU)	na	23.85	0	0	13.65	36.55	50.76	4.55	1.02
pr, Field (u)	NA	7.11	7.23	7.14	8.16	7.87	8.06	7.91	7.76

ABbREVATIONS AND Notes:
CCR Coal Combustion Residuals
cCR: Coal Combustion Resid

sivit sandard units
Uspea: united state
SSEPA: Unite S States Enirommental Protection Agency.
Resuts in oodd are detecteded
LSEPA. 2016 .
from lectit

FIGURES

APPENDIX A

60 Day CMA Extension Demonstration

MEMORANDUM

December 28, 2020
Project No. 129420-028

SUBJECT: Demonstration for 60-Day Extension - Corrective Measures Assessment (CMA)
 Southern Indiana Gas and Electric Company (SIGECO)
 West Ash Pond

F. B. Culley Generating Station (FBC); Warrick County, Indiana

Pursuant to 40 CFR §257.96(a) (CCR Rule Assessment of Corrective Measures), I certify that SIGECO has demonstrated the need for additional time beyond the period of 90 days to complete the assessment of corrective measures due to site-specific conditions and the evaluation of remedial treatment alternatives in support of an informed CMA process.

In the case of the assessment of corrective measures for the FBC West Ash Pond, the site has complex hydrogeology. Receipt of analytical data by certified laboratories has also been delayed due to the high volume of samples received from utility sites around the country combined with staff shortages associated with the pandemic. In addition, SIGECO is in the process of reviewing possible groundwater remedies and is having ongoing discussions with third-party experts regarding assessment and implementation of steps appropriate for the site in the groundwater treatment and remedy assessment process. Based on these site-specific conditions and related groundwater treatment alternatives evaluations in support of the CMA by SIGECO, the CCR Rule allows for a 60-day extension to complete the CMA process.

This certification as submitted, is to the best of my knowledge, accurate and complete.

Signed:

Certifying Engineer

Print Name:
Indiana License No.:
Title:
Company:
Professional Engineer's Seal

Steven F. Putrich, P.E.
PE11200566
CCR Practice Lead, Senior Consulting Engineer
Haley \& Aldrich, Inc.

